A shape-memory alloy (SMA, smart metal, memory metal, memory alloy, muscle wire, smart alloy) is an alloy that "remembers" its original shape and that when deformed returns to its pre-deformed shape when heated. This material is a lightweight, solid-state alternative to conventional actuators such as hydraulic, pneumatic, and motor-based systems. Shape-memory alloys have applications in industries including automotive, aerospace, biomedical and robotics.

The two main types of shape-memory alloys are copper-aluminum-nickel, and nickel-titanium (NiTi) alloys but SMAs can also be created by alloying zinc, copper, gold and iron. NiTi based SMAs are more preferable for most applications due to their stability, practicability and superior thermo-mechanic performance. SMAs can exist in two different phases, with three different crystal structures (i.e. twinned martensite, detwinned martensite and austenite) and six possible transformations.

Community content is available under CC-BY-SA unless otherwise noted.